Connectome-based machine learning models are vulnerable to subtle data manipulations

نویسندگان

چکیده

•Enhancement attacks falsely improve the performance of connectome-based models•Adversarial degrade models•Subtle data manipulations lead to large changes in In recent years, machine learning models using brain functional connectivity have furthered our knowledge brain-behavior relationships. The trustworthiness these has not yet been explored, and determining extent which can be manipulated change results is a crucial step understanding their trustworthiness. Here, we showed that only minor could drastically different performance. Although this work focuses on data, concepts investigated here apply any scientific research uses learning, especially with high-dimensional data. As becomes increasingly popular many fields research, may become major obstacle integrity learning. Neuroimaging-based predictive continue performance, widely overlooked aspect “trustworthiness,” or robustness manipulations. High imperative for researchers confidence findings interpretations. work, used connectomes explore how influence predictions. These included method enhance prediction adversarial noise designed changed model original were extremely similar (r = 0.99) did affect other downstream analysis. Essentially, connectome inconspicuously modified achieve desired Overall, enhancement evaluation existing highlight need counter-measures preserve academic potential translational applications. Human neuroimaging studies approaches identify associations generalize novel samples.1Whelan R. Garavan H. When optimism hurts: inflated predictions psychiatric neuroimaging.Biol. Psychiatry. 2014; 75: 746-748https://doi.org/10.1016/j.biopsych.2013.05.014Abstract Full Text PDF PubMed Scopus (129) Google Scholar,2Gabrieli J.D.E. Ghosh S.S. Whitfield-Gabrieli S. Prediction as humanitarian pragmatic contribution from human cognitive neuroscience.Neuron. 2015; 85: 11-26https://doi.org/10.1016/j.neuron.2014.10.047Abstract (353) Scholar They do so by aggregating weak informative signals occurring throughout brain.3Cremers H.R. Wager T.D. Yarkoni T. relation between statistical power inference fMRI.PLoS One. 2017; 12: e0184923https://doi.org/10.1371/journal.pone.0184923Crossref (204) Scholar,4Noble Mejia A.F. Zalesky A. Scheinost D. Improving magnetic resonance imaging moving beyond cluster-level inference.Proc. Natl. Acad. Sci. USA. 2022; 119 (e2203020119)https://doi.org/10.1073/pnas.2203020119Crossref (5) Machine (“connectome-based models”)5Shen X. Finn E.S. Rosenberg M.D. Chun M.M. Papademetris Constable R.T. Using modeling predict individual behavior connectivity.Nat. Protoc. 506-518https://doi.org/10.1038/nprot.2016.178Crossref (430) Scholar,6Cui Z. Gong G. effect regression algorithms sample size individualized behavioral features.Neuroimage. 2018; 178: 622-637https://doi.org/10.1016/j.neuroimage.2018.06.001Crossref (159) Scholar,7Du Y. Fu Calhoun V.D. Classification disorders connectivity: promising but challenging.Front. Neurosci. 525https://doi.org/10.3389/fnins.2018.00525Crossref are among most methods establishing relationships, they successfully characterized neural correlates various clinically relevant processes,8Rosenberg Casey B.J. Holmes A.J. complements explanation developing brain.Nat. Commun. 9: 589https://doi.org/10.1038/s41467-018-02887-9Crossref (90) including general ability,9Song Neural signatures attentional engagement during narratives its consequences event memory.Proc. 2021; 118 (e2021905118)https://doi.org/10.1073/pnas.2021905118Crossref (12) disorders,7Du Scholar,10Nielsen A.N. Barch D.M. Petersen S.E. Schlaggar B.L. Greene D.J. neuroimaging: evaluating applications psychiatry.Biol. Cogn. Neuroimaging. 2020; 5: 791-798https://doi.org/10.1016/j.bpsc.2019.11.007Abstract (42) affective states,11Goldfarb E.V. Seo Sinha Hippocampal seed predicts feeling stress.Nat. 11: 2650https://doi.org/10.1038/s41467-020-16492-2Crossref (27) abstinence individuals substance use disorder.12Yip S.W. Potenza M.N. Carroll K.M. Connectome-based cocaine abstinence.Am. J. 2019; 176: 156-164https://doi.org/10.1176/appi.ajp.2018.17101147Crossref (75) Recent uncovered bias, lack fairness across groups, models,13Benkarim O. Paquola C. Park B.-Y. Kebets V. Hong S.-J. de Wael R.V. Zhang Thomas Yeo B.T. Eickenberg M. Ge et al.The cost untracked diversity brain-imaging prediction.bioRxiv. (Preprint at)https://doi.org/10.1101/2021.06.16.448764Crossref Scholar,14Li Bzdok Chen Tam Ooi L.Q.R. Patil K.R. Jabbi Eickhoff S.B. al.Cross-ethnicity/race generalization failure resting-state connectivity.Sci. Adv. 8: eabj1812https://doi.org/10.1126/sciadv.abj1812Crossref (18) Scholar,15Greene A.S. Shen Noble Horien Hahn C.A. Arora Tokoglu F. Spann Carrión C.I. Barron D.S. al.Brain–phenotype fail who defy stereotypes.Nature. 609: 109-118https://doi.org/10.1038/s41586-022-05118-wCrossref (15) stereotypes.15Greene improvements accuracy6Cui (i.e., race, age, gender bias)13Benkarim improving quality clinical translation, accurate bias-free enough. should also high trustworthiness, define words, output trustworthy remains despite input X data). Without degree able ensuing interpretations, even modifications dramatically alter results. explored perspectives literature, privacy16Brundage Avin Wang Belfield Krueger Hadfield Khlaaf Yang Toner Fong al.Toward AI development: mechanisms supporting verifiable claims.arXiv. at)https://doi.org/10.48550/arXiv.2004.07213Crossref explainability,17Rawal Rawat Amant advances explainable artificial intelligence: status, challenges perspectives.IEEE Transactions Artificial Intelligence. 1: 1https://doi.org/10.1109/TAI.2021.3133846Crossref examine through lens manipulations.18Eshete B. Making trustworthy.Science. 373: 743-744https://doi.org/10.1126/science.abi5052Crossref (7) A form manipulation specific attacks), where pattern (or “noise”) deliberately trick added cause misclassification.19Szegedy Zaremba W. Sutskever I. Bruna Erhan Goodfellow Fergus Intriguing properties networks.arXiv. 2013; at)https://doi.org/10.48550/arXiv.1312.6199Crossref Scholar,20Goodfellow I.J. Shlens Szegedy Explaining harnessing examples.arXiv. at)https://doi.org/10.48550/arXiv.1412.6572Crossref contexts, cybersecurity,21Biggio Corona Maiorca Nelson Šrndić N. Laskov P. Giacinto Roli Evasion against at test time.in: Learning Knowledge Discovery Databases. Springer Berlin Heidelberg, 2013: 387-402https://doi.org/10.1007/978-3-642-40994-3_25Google Scholar,22Demontis Melis Biggio Arp Rieck K. Yes, more secure! case study android malware detection.IEEE Trans. Dependable Secure Comput. 16: 711-724https://doi.org/10.1109/TDSC.2017.2700270Crossref (108) image recognition,20Goodfellow Scholar,23Hendrycks Zhao Basart Steinhardt Song Natural examples.in: Proceedings IEEE/CVF Conference Computer Vision Pattern Recognition. 2021: 15262-15271https://doi.org/10.1109/CVPR46437.2021.01501Google medical recordings.24Paschali Conjeti Navarro Navab Generalizability vs. Robustness: investigating networks Medical Image Computing Assisted Intervention. 2018: 493-501https://doi.org/10.1007/978-3-030-00928-1_56Crossref (41) Scholar,25Finlayson S.G. Bowers J.D. Ito Zittrain J.L. Beam A.L. Kohane I.S. Adversarial learning.Science. 363: 1287-1289https://doi.org/10.1126/science.aaw4399Crossref (367) Scholar,26Han Hu Foschini L. Chinitz Jankelson Ranganath Deep electrocardiograms susceptible attack.Nat. Med. 26: 360-363https://doi.org/10.1038/s41591-020-0791-xCrossref (58) For neuroimaging, problematic distant future (e.g., applications25Finlayson Scholar,27Finlayson Chung H.W. deep Systems.arXiv. at)https://doi.org/10.48550/arXiv.1804.05296Crossref Scholar). immediate concern studies. majority seek perform ethical common than one might expect.28Acuna D.E. Brookes P.S. Kording K.P. Bioscience-scale automated detection figure element reuse.bioRxiv. at)https://doi.org/10.1101/269415Crossref (0) Scholar,29Bucci E.M. Automatic biomedical literature.Cell Death Dis. 400https://doi.org/10.1038/s41419-018-0430-3Crossref (19) Scholar,30Cicconet Elliott Richmond D.L. Wainstock Walsh Forensics: detecting duplication images manipulation-invariant similarity.arXiv. at)https://doi.org/10.48550/arXiv.1802.06515Crossref Scholar,31Bik Casadevall Fang F.C. prevalence inappropriate publications.mBio. 2016; 7: e00809-16https://doi.org/10.1128/mBio.00809-16Crossref (112) Scholar,32Fanelli How scientists fabricate falsify research? systematic review meta-analysis survey data.PLoS 2009; 4: e5738https://doi.org/10.1371/journal.pone.0005738Crossref (1007) Scholar,33Al-Marzouki Evans Marshall Roberts Are real? Statistical fabrication trials.BMJ. 2005; 331: 267-270https://doi.org/10.1136/bmj.331.7511.267Crossref (89) example, an analysis Bik al. about 2% biology papers contained evidence intentional manipulation.31Bik Furthermore, admitted fabrication/falsification, 14% seeing colleagues fabricate/falsify survey.32Fanelli result wasted grant money misdirection endeavors, enhanced diminished via crucial. models. Specifically, introduce “performance attack” models, injected small, inconspicuous patterns phenotype. We effectiveness Whereas manipulate particular prediction, modify entire dataset training data) both cases—enhancement attacks—we find subtle four datasets. demonstrate current implementations highly manipulations, points toward preventive measures built designs sharing practices. Functional MRI obtained Adolescent Brain Cognitive Development (ABCD) study,34Casey Cannonier Conley M.I. Cohen A.O. Heitzeg Soules M.E. Teslovich Dellarco D.V. adolescent development study: acquisition 21 sites.Dev. 32: 43-54https://doi.org/10.1016/j.dcn.2018.03.001Crossref (620) Connectome Project (HCP),35Van Essen D.C. Smith S.M. Behrens T.E.J. Yacoub E. Ugurbil WU-Minn HCP ConsortiumMinn ConsortiumThe Wu-Minn Project: overview.Neuroimage. 80: 62-79https://doi.org/10.1016/j.neuroimage.2013.05.041Crossref (2789) Philadelphia Neurodevelopmental Cohort (PNC),36Satterthwaite Connolly J.J. Ruparel Calkins Jackson M.A. Roalf D.R. Hopson Prabhakaran Behr Cohort: publicly available resource normal abnormal youth.Neuroimage. 124: 1115-1119https://doi.org/10.1016/j.neuroimage.2015.03.056Crossref (171) Southwest University Longitudinal Imaging Multimodal (SLIM) study.37Liu Wei Q. Meng Wu Bi Zuo X.-N. Qiu test-retest healthy young adults southwest China.Sci. Data. 170017https://doi.org/10.1038/sdata.2017.17Crossref (74) first three datasets (ABCD, HCP, PNC) IQ self-reported sex. SLIM was introduced measure (state anxiety). All analyses conducted SLIM, downloaded fully preprocessed connectomes. ABCD PNC, raw registered space previously described.38Greene Gao Task-induced state improves traits.Nat. 2807https://doi.org/10.1038/s41467-018-04920-3Crossref (202) Scholar,39Rapuano Maza M.T. Dennis N.J. Dorji Todd Behavioral vulnerability childhood.Dev. 46: 100878https://doi.org/10.1016/j.dcn.2020.100878Crossref (10) started minimally data.40Glasser M.F. Sotiropoulos S.N. Wilson J.A. Coalson T.S. Fischl Andersson Xu Jbabdi Webster Polimeni J.R. minimal preprocessing pipelines Project.Neuroimage. 105-124https://doi.org/10.1016/j.neuroimage.2013.04.127Crossref (2461) Next, standard, identical steps performed all BioImage Suite41Joshi Okuda Belhachemi Murphy Staib L.H. Unified framework development, deployment robust testing algorithms.Neuroinformatics. 2011; 69-84https://doi.org/10.1007/s12021-010-9092-8Crossref (133) (see experimental procedures). cases, parcellated into 268 nodes atlas.42Shen Groupwise whole-brain parcellation fMRI network node identification.Neuroimage. 82: 403-415https://doi.org/10.1016/j.neuroimage.2013.05.081Crossref (540) After excluding participants excessive motion (>0.2 mm), missing due full coverage, task 3,362 dataset, 506 562 PNC 445 remained. following sections, comprehensively characterize effects attacks, then evaluate attacks. show particularly vulnerable time, (Figure 1). To trust, trained baseline fluid intelligence (IQ) classification provide good benchmark because wide availability prominence literature.5Shen Scholar,43Biswal B.B. Mennes Gohel Kelly Beckmann C.F. Adelstein J.S. Buckner R.L. Colcombe discovery science function.Proc. 2010; 107: 4734-4739https://doi.org/10.1073/pnas.0911855107Crossref (2187) Scholar,44Gao Combining multiple phenotypic measures.Neuroimage. 201: 116038https://doi.org/10.1016/j.neuroimage.2019.116038Crossref (62) Scholar,45Weis Hoffstaedter Nostro B.T.T. Sex resting connectivity.Cereb. Cortex. 30: 824-835https://doi.org/10.1093/cercor/bhz129Crossref (69) Scholar,46Eliot Ahmed Khan Patel Dump “dimorphism”: comprehensive synthesis reveals few male-female differences size.Neurosci. Biobehav. Rev. 125: 667-697https://doi.org/10.1016/j.neubiorev.2021.02.026Crossref (84) ridge (rCPM)44Gao nested 10-fold cross-validation 10% feature selection. Regression evaluated Pearson’s correlation coefficient r cross-validated R2, called q2,47Scheinost Lake Salehi O’Connor al.Ten simple rules neuroimaging.Neuroimage. 193: 35-45https://doi.org/10.1016/j.neuroimage.2019.02.057Crossref measured predicted scores. found near zero correlations ABCD, consistent Li al.,14Li low Table S1). sex, linear support vector (SVM) logistic features L2 regularization. accuracy classifiers sex relatively success SVM regression, although had higher (Table will describe metrics S1 altered date, focused corrupting decrease accuracy.48Biggio Poisoning machines.arXiv. 2012; at)https://doi.org/10.48550/arXiv.1206.6389Crossref However, here, feasibility increase (which label “enhancement attacks”) ways cannot readily detected eye analyses. Current open standards would offer protection without statistically altering First, (n 3,262), (first session, n 506), 562) rCPM,44Gao selection correlated 2, top). randomly selected 20% edges same exact participants) individual-specific anti-correlated) each participant’s score. varied magnitude repeated cross-validation, recording 2). Results easily low-magnitude pattern, achieving near-perfect scores > 0.9) corrupted still maintained edge-wise ≈ counterparts. Figures 1 regularization parameters smaller parameter made effective addition, S2). suggest matrix undermine context appeared almost visually 2), if affected If common, affected, make it difficult determine manipulated. mean absolute value rCPM PNC. increased scale greatly increased, 0.9 (Figures 2 3A ). Corroborating visual inspection, remained very values 3A, top row). participant-wise Kolmogorov-Smirnov test49Massey F.J. goodness fit.J. Am. Stat. Assoc. 1951; 68-78https://doi.org/10.1080/01621459.1951.10500769Crossref (4071) suggested no significant edge distributions enhan

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

Machine Learning on Human Connectome Data from MRI

Functional MRI (fMRI) and diffusion MRI (dMRI) are non-invasive imaging modalities that allow in-vivo analysis of a patient’s brain network (known as a connectome). Use of these technologies has enabled faster and better diagnoses and treatments of neurological disorders and a deeper understanding of the human brain. Recently, researchers have been exploring the application of machine learning ...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Interactive Data Exploration via Machine Learning Models

This article provides an overview of our research on data exploration. Our work aims to facilitate interactive exploration tasks in many big data applications in the scientific, biomedical and healthcare domains. We argue for a shift towards learning-based exploration techniques that automatically steer the user towards interesting data areas based on relevance feedback on database samples, aim...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Patterns

سال: 2023

ISSN: ['2666-3899']

DOI: https://doi.org/10.1016/j.patter.2023.100756